
www.manaraa.com

Proving Consistency Assertions for

Automotive Product Data Management

Wolfgang Küchlin and Carsten Sinz
Symbolic Computation Group, WSI for Computer Science, University of Tübingen
and Steinbeis Technology Transfer Center OIT,
Sand 13, D-72076 Tübingen, Germany
http://www-sr.informatik.uni-tuebingen.de

Abstract. We present a formal specification and verification approach for industrial
product data bases containing Boolean logic formulae to express constraints. Within
this framework, global consistency assertions about the product data are converted
into propositional satisfiability problems. Today’s state-of-the-art provers turn out
to be surprisingly efficient in solving the SAT-instances generated by this process.
Moreover, we introduce a method for encoding special non-monotonic constructs
in traditional Boolean logic. We have successfully applied our method to industrial
automotive product data management and could establish a set of commercially
used interactive tools that facilitate the management of change and help raise quality
standards.

Keywords: formal specification, verification, product data management, product
configuration, industrial application

1. Introduction

The use of formal methods is still uncommon in industrial practice [17].
Analysis of safety-critical systems and verification of both processors
and protocols seem to be among the rare exceptions [10, 13, 15, 19].
The reason for this is manifold: First, there are intrinsic preconditions
imposed on the process to be formalized. One is the requirement of
precise, symbolic input data; this contrasts with the imprecise data
delivered by physical measurement. Another is the algorithmic com-
plexity of symbolic techniques which is usually much higher than that
of numerical or heuristic procedures. Second, the industrial process to
be formalized has to be understood very precisely in every aspect, and
modeling has to start on a well-founded basis. The language in which
the process is to be described must have sufficient expressive power, but
should exclude intractable logics—incomplete, undecidable, or merely
too time- or space-consuming for the intended purpose.

Besides these intrinsic reasons there are more practical ones: On the
one hand, one is faced with industrial prejudice against the power of
formal verification [4]; on the other hand, research in the ATP commu-
nity is often not directly concerned with real-world application aspects.

c© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

sat2000.tex; 19/01/2000; 17:36; p.1

www.manaraa.com

2

Further obstacles arise when communication between researchers and
practitioners is hindered by different worlds of thought, or when in-
corporation of formal methods requires major changes in the actual
production process. However, successful verification projects conducted
in the realm of industry may further the acceptance of formal methods
[3, 12].

In this article we describe a method to reveal inconsistencies in a
data base used by DaimlerChrysler AG to check the constructibility of
motor-vehicles of the Mercedes-Benz lines. This project was greatly
helped by the fact that Boolean logic was already used to express
constraints in the product data base. Difficulties were imposed by the
mere complexity, as the data that had to be considered for some tests
consisted of more than 18,000 rules (elementary Boolean formulae) and
1,700 propositional variables. In addition we had to formalize significant
portions of the industrial process involved in order to prove assertions
that could not be checked so far.

Although the general problem of product configuration has gained
interest over the last years, we have not yet seen the formalization and
verification of an existing large-scale industrial system.

The paper is organized as follows: First, we briefly describe the
automobile constructibility data base, its integration into the order
processing and production process, and show some potential inconsis-
tencies that might occur in the data base. Then a formalization of the
process to check individual car orders is presented, followed by a variety
of global data base consistency criteria formulated as propositional sat-
isfiability problems. Finally, we present experimental results achieved
using a state-of-the-art propositional satisfiability checker.

2. Product Documentation and Order Processing

The Mercedes-Benz passenger car and commercial vehicle production
encompasses a wide variety of different models customers can order.
Apart from different model classes, design lines and engine variants, an
extraordinary number of supplementary equipment may be selected.
Not all theoretically possible combinations of variants can actually be
produced, however. Geometrical, electrical or other engineering limita-
tions are as common as legal or sales restrictions. Moreover, the avail-
ability of certain models can differ from country to country and undergo
substantial temporal change. To automate administration and produc-
tion tasks, exact knowledge about valid models is needed in electronic
form. Thus, a data base (called product documentation) is employed

sat2000.tex; 19/01/2000; 17:36; p.2

www.manaraa.com

3

to draw the distinction between models that can be manufactured and
those that cannot.

A second, but equally important purpose of the product documen-
tation is to transform a customer’s model description into a parts list
for the requested vehicle, which can then be fed into the production
planning process.

2.1. Processing a Customer’s Order

A customer’s order consists of a basic model class selection together
with a set of further equipment codes describing additional features.
As model classes can be decoded into a few special equipment codes,
all rules in the product documentation are formulated on the basis of
these codes, which are just propositional variables.

Ascertaining the constructibility of an individual order as well as
parts list generation and other intermediate steps are performed by
evaluating Boolean formulae stored in the product documentation data
base.

Within our application constructibility may only be checked with
respect to the rules of the product documentation, not with respect to
physical reality. Therefore, we call an order constructible (or valid) if
the corresponding vehicle model can be manufactured according to the
product documentation; otherwise an order is called invalid.

The most important of the aforementioned intermediate steps—and
the only one considered here—allows the completion of orders by ap-
pending additional codes. This supplementing process is mainly used
to add codes that are implied by technical dependencies or that make
up equipment packages.

The whole order processing procedure (slightly simplified) consists
of the following steps:

1. Order completion: Extend the customer’s order by additional codes.

2. Constructibility check: Are all constraints on constructible models
fulfilled by this order?

3. Parts list generation: Transform the (possibly supplemented) order
into a parts list.

These three steps are illustrated in Figure 1, schematically on the
left hand side and by a concrete example on the right.

sat2000.tex; 19/01/2000; 17:36; p.3

www.manaraa.com

4

(order completion)

F202, FW, M111, M22, L, 229L, 744U, 401A, 955,

584, 305,...

F202, FW, M111, M22, L, 229L, 744U, 401A, 955,

584, 305,...

06 33005 20278A, 06 92004 20228A,...

06PB202000206, 06PB101812520, 06 80048 20801A,

customer’s order

constructibility

constructible

customer’s order

parts list generation

order’s parts list

constructible

F202, FW, M111, M22, L, 229L, 744U, 401A, 955

adding 584, 305,...

conversion codes – parts

not
constructible

checked, possibly extended

supplementing process

06 80015 20284A, 06PB202805014, 06 47094 20806A,

check

Figure 1. Processing customers’ orders

2.2. Consistency of the Product Documentation

The mere complexity of the product documentation sometimes induces
erroneous data base entries that are usually hard to find. Global usage
and varying knowledge of the operating personnel aggravate this trend.
In one of the evaluated settings, consisting of that part of the product
documentation that specifies the limousines of the Mercedes-Benz C-
class, 1,151 codes and formulae containing a total of more than 170,000
logical symbols had to be considered.

The formal specification of the complete process enables posterior
verification of important aspects and thus offers new possibilities to
reduce inconsistencies.

A priori, that is, without explicit knowledge of intended constraints
on constructible models, the following data base consistency criteria
may be checked:

Necessary codes: Are there codes that must appear in each con-
structible order?

Inadmissible codes: Are there any codes that cannot possibly appear
in any constructible order?

sat2000.tex; 19/01/2000; 17:36; p.4

www.manaraa.com

5

Consistency of the order completion process: Are there any con-
structible orders that are invalidated by the supplementing pro-
cess? Does the outcome of the supplementing process depend on
the (probably accidental) ordering in which codes are added?

Superfluous parts: Are there any parts that cannot occur in any
constructible order?

Ambiguities in the parts list: Are there any orders for which mu-
tually exclusive parts are simultaneously selected?

By using additional information further checks may be performed.
Most of them require only minor changes with respect to the above
criteria. The existence of valid orders with certain constraints falls
under this class of checks. They are an easy generalization of the search
for necessary or inadmissible codes.

We see our main contribution in showing how to formalize these con-
sistency checks and how to apply theorem proving methods to improve
the data quality within an existing industrial process.

3. A Formal View of Product Documentation

We will now describe the data base and its functionality more thor-
oughly. Starting with constructibility, and continuing with the order
completion process, we are finally led to parts list generation.

Thus, we achieve a formal description of the complete actual order
processing procedure for Mercedes-Benz cars and trucks. This formal-
ization will afterwards serve as the basis on which product documen-
tation consistency criteria can be formulated.

3.1. Preliminaries

Let C be the set of all equipment codes used in the product documen-
tation. Then a customer’s order O is the subset of C corresponding to
the equipment selected in the order. Obviously each order O may be
interpreted as a truth assignment by using the characteristic function
χO : C → {0, 1} of O relative to C, where we interpret 1 as truth and 0
as falsity.

All checks and modifications performed on a customer’s order O
depend on the evaluation of formulae (rules of the product documenta-
tion) under the truth assignment χO. For a formula F this evaluation
is denoted by χ∗

O(F). We will also use the notation χO |= F , or even
shorter O |= F , instead of χ∗

O(F) = 1.

sat2000.tex; 19/01/2000; 17:36; p.5

www.manaraa.com

6

Furthermore, we assume that each order contains a specification
(exactly one of the codes L and R) of whether left or right hand side
steering is demanded.

3.2. Constructibility

In general, constructibility1 of a customer’s order O is checked accord-
ing to the following scheme: For each code, there may be several rules
indicating restrictions under which this code may be used. A code is
called constructible within O if all constraining rules associated with
this code are fulfilled, that is, all of these rules evaluate to true under
χO. For an order to be constructible, each code of the order must be
constructible.

The constructibility check consists of two independent parts: The
first one is independent of the car model class considered, while the
second one takes into account additional features of each car model
class. The latter also depends on the kind of steering2 (left or right
hand side) under consideration.

The model class independent part of the constructibility check con-
sists of a rule for each code indicating a constraint under which it may
(or may not) be used. For a code c we use the notation CI(c) for the
model class independent rule corresponding to c. To pass the model
class independent constructibility check, an order O must fulfill the
following condition:

O |= C
I(c) for each c ∈ O . (1)

The second part of the constructibility check is more complex, and
the relevant rules are hierarchically organized, as shown in Figure 2.

There is a set P of geometric positions and a set V of variants.
Positions are grouped reflecting common functionality or usage. With
each position p ∈ P a unique code c is associated; however, the converse
need not hold: hence, a code may occur at different positions. We use
the function Pos : C → 2P to denote all positions associated with a
code. Positions are unique within the whole product documentation,
and for each position a (possibly empty) set of variants V ⊆ V exists.
Each variant possesses an additional steering attribute (left or right,
L or R). The function Var : P × {L,R} → 2V selects all variants at
a position with matching steering type. The model class dependent
constructibility rules3 CD(p, v) are indexed by a pair (p, v) ∈ P × V.

1 German: Baubarkeit
2 German: Lenkungsvariante
3 German: Baubarkeitsregeln

sat2000.tex; 19/01/2000; 17:36; p.6

www.manaraa.com

7

R1 R2 R3

0001 0002 0003

constructibility rules

variants

positions code:988 code:704 code:494

A-704A-988

steering: L steering: L

B-1020

steering: R

Figure 2. Structure of model class dependent constructibility

For a code c to be constructible, at least one variant v of matching
steering type must exist for every position p associated with c, such
that CD(p, v) is fulfilled. In a valid order O every code c ∈ O must be
constructible.

Thus we obtain the following condition for an order O of steering
type s to pass the model class dependent constructibility check:

O |= B(c, s) for each c ∈ O, (2)

where B(c, s) is defined as

B(c, s) =
∧

p∈Pos(c)

∨

v∈Var(p,s)

C
D(p, v) . (3)

The cardinalities of Pos(c) and Var(p, s) are usually less than a
dozen, the individual rules CD(p, v) normally consist of much fewer
than a hundred symbols.

For an order to be valid, it must pass both the model dependent
and the independent check.

3.3. Order Completion Process

The order completion process adds implied codes to an order. The
process is guided by special formulae, called supplementing rules4, as-
sociated with each code. These rules are structurally organized in the
same way as those of the model dependent constructibility check, that
is, in positions and variants. Each rule application extends the order

4 German: Zusteuerungsregeln

sat2000.tex; 19/01/2000; 17:36; p.7

www.manaraa.com

8

by exactly one code, so the whole completion process is iterated until
no further changes result.

Ideally, the relationship between original and augmented order should
be functional. However, the result of the order completion process may
depend critically on the order of rule application, whereas the exact
sequence in which individual codes are added is sometimes obscure.
Therefore, the functional relationship cannot be assumed to hold in
general. We will show below how to identify potential instances of this
problem.

As is the case with the model class dependent constructibility check,
supplementing rules S(p, v) are hierarchically organized in positions
p ∈ P and variants v ∈ V.5 The semantics of positions is different,
though. In order to activate a supplementing step for code c, it is suffi-
cient that any rule for code c is fulfilled, independent of the position or
variant of the rule. To avoid invalidation of correct orders, constructibil-
ity is also considered during such a step. This works as follows: Besides
the supplementing rule S(p, v) for code c, the corresponding formulae

CD(p, v) and CI(c) must evaluate to true under order O.
Thus, code c is added to order O of steering type s, if

O |= Z(c, s), (4)

where Z(c, s) is defined as

Z(c, s) =

(

∨

p∈Pos(c)
v∈Var(p,s)

(

S(p, v) ∧ CD(p, v)
)

)

∧ CI(c) . (5)

Symbolically, we can express the admissible steps of the supplement-
ing process as a rewrite relation −→

S
⊆ 2C × 2C . Thus O −→

S
O′ iff

there is a code c such that O |= Z(c, s), where s is the unique steering
code occurring in O, c /∈ O and O′ = O ∪̇ {c}. We also use the notation
O c−→

S
O′ if O′ is obtained by adding code c to order O. Hence we

have

−→
S

=
⋃

c∈C

c−→
S

.

Note that relation −→
S

is a terminating reduction-relation. The
reflexive-transitive closure of −→

S
is denoted by −→∗

S
, and the n-fold

product of−→
S

by−→n
S
. Furthermore, we write−→≤n

S
for
⋃

0≤i≤n −→
i
S
.

Definitions of basic notions regarding rewrite systems can be found in
[8].

5
C

D(p, v) corresponds to S(p, v)

sat2000.tex; 19/01/2000; 17:36; p.8

www.manaraa.com

9

3.4. Parts List Generation

The parts list6 is subdivided into modules, positions and variants, with
decreasing generality from modules to variants. Parts are grouped in
modules depending on functional and geometrical aspects. Each posi-
tion contains all those parts which may be used alternatively in one
place. The mutually exclusive parts of a position are specified using
variants. Admissible variants depend, as is the case with model class
dependent constructibility, on the steering type under consideration.
Each variant is assigned a formula called a code rule7, and a part
number. The structure of the parts list is depicted in Figure 3.

1 2 3

modules

positions

variants

501206

20 60

code rules / parts R1 R2 R3

100

part: 12496 part: 96541part: 40567

402968 200408

steering: Lsteering: L steering: R

Figure 3. Structure of the parts list

The sets of part numbers, modules, positions, and variants of the
parts list are denoted by N ,M, I, andW, respectively. All variants of
module m ∈M at position p ∈ I with steering type s are delivered by
function PV :M×I×{L,R} → 2W , the steering type of a variant v of
module m and position p is determined by λ(m, p, v). The code rule of
variant v at position p in module m is accessible through R(m, p, v), the
corresponding part is τ(m, p, v). The mapping τ : (m, p, v) 7→ τ(m, p, v)
need not be injective: for each position there is a part, but a part may be
used at many positions. Moreover, let the function Ω : N → 2M×I×W

select all occurrences of a certain part in the parts list.

6 German: Teileliste, Stückliste
7 German: Coderegel

sat2000.tex; 19/01/2000; 17:36; p.9

www.manaraa.com

10

Variant v at position p of module m is selected for an order O of
steering type s, if

λ(m, p, v) = s and O |= R(m, p, v) . (6)

In order to construct the parts list for a completed and checked
customer’s order O, one thus scans through all modules, positions, and
variants, and selects those parts which possess a matching steering
attribute and a code rule that evaluates to true under O.

Usually, exactly one variant has to be selected for each module
position.

Let us end this section with two notes:

1. The product data base as described above is in use for the Mercedes-
Benz passenger cars only. Commercial vehicles are documented in
a slightly different fashion.

2. In the actual process some minor refinements and exceptional cases
occur which we did not consider here.

4. Formalization of Consistency Assertions

In this section we want to develop criteria expressing various consis-
tency aspects of the product documentation data base as a whole. These
aspects were already briefly mentioned in Section 2.2.

Most of these consistency assertions require a characterization of
the set of orders having passed the order completion process and the
constructibility check, just before parts list generation.

Starting with a formula representing all constructible models, and
extending it by a partial formula concerning the supplementing process,
we finally reach the required characterization. Having this formula at
hand, we can formulate the aforementioned consistency assertions as
propositional satisfiability problems.

Throughout this section we assume the set of Boolean variables to
be fixed to C. The set of propositional formulae over C is denoted by
F(C) or simply F . Formula variables are implicitly assumed to range
over F , sets of orders are subsets of 2C .

Furthermore, we assume ∧,∨,¬ and ⊥ as basic logical constants,
whose semantics are defined, as usual, by

χ∗
O(F ∧G) = min(χ∗

O(F), χ∗
O(G))

χ∗
O(F ∨G) = max(χ∗

O(F), χ∗
O(G))

χ∗
O(¬F) = 1− χ∗

O(F)

χ∗
O(⊥) = 0

sat2000.tex; 19/01/2000; 17:36; p.10

www.manaraa.com

11

Other symbols (⇒, ⊤) and their semantics are derived from the logical
constants as usual.

Moreover, we restrict our attention to only one model class. This is
no limitation in practice, because model classes are mutually indepen-
dent.

DEFINITION 4.1. A propositional formula F describes a set S of
orders if S is the set of models of F (i.e., O |= F iff O ∈ S).

PROPOSITION 4.2. The set of model class independent constructible
orders is described by formula BI, where

BI :=
∧

c∈C

(c⇒ C
I(c)) . (7)

Proof. Let S be the set of model class independent constructible
orders. By (1) we know that O ∈ S iff O |= CI(c) for each c ∈ O. So
we have to show that

O |= BI iff O |= C
I(c) for each c ∈ O . (∗)

At first, note that evaluation of BI under any χO yields

χ∗
O(BI) = min

c∈C
{max(1− χO(c), χ∗

O(C
I(c)))} .

We now prove both implications of (∗).

“⇒”: Let O |= BI and c′ ∈ O arbitrary. Then χ∗
O(BI) = 1 and, in

particular, max(1 − χO(c′), χ∗
O(CI(c′))) = 1. As c′ ∈ O implies

χO(c′) = 1, we have χ∗
O(CI(c′)) = 1 and thus O |= CI(c′).

“⇐”: Let O ⊆ C with O |= CI(c) for each c ∈ O. Choose any c′ ∈ C.
If c′ 6∈ O then χO(c′) = 0. Otherwise we have χ∗

O(CI(c′)) = 1. In
both cases max(1−χO(c′), χ∗

O(CI(c))) = 1 holds. As c′ was chosen
arbitrarily we have χ∗

O(BI) = 1.

PROPOSITION 4.3. The set of model class dependent constructible
orders is described by formula BD, where

BD :=
∧

c∈C

c ⇒
∧

p∈Pos(c)
s∈{L,R}

s ⇒
∨

v∈Var(p,s)

C
D(p, v)

(8)

=
∧

c∈C
s∈{L,R}

(

c ∧ s ⇒ B(c, s)

)

, (9)

and B(c, s) is defined by Equation (3).

sat2000.tex; 19/01/2000; 17:36; p.11

www.manaraa.com

12

Proof. The equivalence of (8) and (9) is easily shown. The rest of
the proof is similar to that of Proposition 4.2. Let sO be the uniquely
determined steering type of order O. Using Definition (2) we have to
show that

O |= BD iff O |= B(c, sO) for each c ∈ O . (∗∗)

Formula (9) yields for arbitrary O

χ∗
O(BD) = min

c∈C,s∈{L,R}
{max(1− χO(c), 1 − χO(s), χ∗

O(B(c, s)))} .

We again show the two implications of (∗∗) independently:

“⇒”: Let O |= BD and c′ ∈ O arbitrary. Furthermore, let sO be
the uniquely determined steering type of O. Then χ∗

O(BD) = 1
and max(1 − χO(c′), 1 − χO(sO), χ∗

O(B(c′, sO))) = 1. As χO(c′) =
χO(sO) = 1 we have χ∗

O(B(c′, sO))) = 1 and thus O |= B(c′, sO).

“⇐”: Let O ⊆ C with O |= B(c, sO) for each c ∈ O and uniquely
determined sO ∈ O ∩ {L,R}. Choose any c′ ∈ C, s′ ∈ {L,R}.
For s′ 6= sO we obtain χO(s′) = 0. If c′ 6∈ O then χO(c′) = 0.
Otherwise (s′ = sO, c′ ∈ O) we have χ∗

O(B(c′, s′)) = 1. In each case
max(1− χO(c′), 1 − χO(s′), χ∗

O(B(c′, s′)))} = 1 holds. As c′ and s′

were chosen arbitrarily we have χ∗
O(BD) = 1.

Formula BD allows orders with either no or multiple steering codes.
To enforce exactly one s ∈ {L,R} in each order, we use the following
formula:

PROPOSITION 4.4. The set of all orders containing exactly one steer-
ing code s ∈ {L,R} is described by formula BS, where

BS := (L ∨R) ∧ ¬(L ∧R) . (10)
Proof. By case distinction whether or not L,R ∈ O.

COROLLARY 4.5. The set of (effectively) constructible orders is de-
scribed by formula BC, where

BC := BI ∧ BD ∧ BS . (11)
Proof. By Propositions 4.2, 4.3 and 4.4, and the fact that ∧ corre-

sponds to set intersection.

What we have achieved so far is the formalization of the constructibil-
ity check; the order completion process, however, is not yet integrated.
At first glance, it may seem that the supplementing process requires

sat2000.tex; 19/01/2000; 17:36; p.12

www.manaraa.com

13

modeling some kind of state transition. Describing each step in this
way inevitably necessitates the use of non-monotonic or modal logic.
Neither way seems to be desirable due to complexity considerations.

4.1. Avoiding State Transitions

The major part of the criteria to be checked requires no knowledge of
the dynamic development caused by the supplementing process. This
holds, e.g., for the (static) description of all possible states appearing
after completion of the supplementing process. Moreover, formalization
of changes caused by a fixed number of supplementing steps is also
possible within propositional logic, as is shown later.

Before resuming with further criteria, we want to comment on some
simple properties of relation −→

S
.

At first, note that an order is left unchanged by the supplementing
process iff it is in −→

S
-normal form. Furthermore, an −→

S
-normal

form of an order O of steering type s is characterized by the following
property (compare with Equation (4)):

O 6|= Z(c, s) for all c ∈ C \O . (12)

We therefore obtain

PROPOSITION 4.6. The set of orders left unchanged by the supple-
menting process is described by formula ZU, where

ZU :=
∧

c∈C
s∈{L,R}

s ∧

(

∨

p∈Pos(c)
v∈Var(p,s)

(

S(p, v) ∧ C
D(p, v)

)

)

∧ C
I(c) ⇒ c

(13)

=
∧

c∈C
s∈{L,R}

(

s ∧ Z(c, s)⇒ c

)

, (14)

and Z(c, s) is defined by Equation (5).
Proof. Formula (13) is just the version of (14) with the definition of

Z(c, s) expanded, so equivalence is obvious. Furthermore, let sO be the
unique steering type of order O. Using (12) we now have to show that

O |= ZU iff O 6|= Z(c, sO) for all c ∈ C \O . (∗∗∗)

Evaluation yields for arbitrary O

χ∗
O(ZU) = min

c∈C,s∈{L,R}
{max(1− χO(s), 1− χ∗

O(Z(c, s)), χO(c))} .

sat2000.tex; 19/01/2000; 17:36; p.13

www.manaraa.com

14

As in similar proofs before, equivalence (∗∗∗) is shown by proving the
two implications directly, which we feel free to omit here.

We are now able to describe the set of orders that appear just before
parts list generation:

COROLLARY 4.7. The set of orders which have passed the supple-
menting process and the constructibility check are described by formula
BZ, where

BZ := BC ∧ ZU . (15)
Proof. Corollary 4.5, Proposition 4.6.

Four of the five initially posed problems can now be solved:

Necessary codes: Code c is necessary iff the formula

BZ ⇒ c

is a tautology, which is equivalent to BZ ∧ ¬c being unsatisfiable.

Inadmissible codes: Code c is inadmissible iff the formula

c⇒ ¬BZ

is a tautology. This holds iff BZ ∧ c is not satisfiable.

Superfluous parts: Part t is superfluous iff

BZ ∧
∨

(m,p,v)∈Ω(t)

(

λ(m, p, v) ∧ R(m, p, v)
)

is unsatisfiable.

Ambiguities in the parts list generation process: There is an am-
biguity between variants v1 and v2 at position p of module m iff
the formula

BZ ∧ λ(m, p, v1) ∧ R(m, p, v1) ∧ λ(m, p, v2) ∧ R(m, p, v2)

is satisfiable.

The interpretation of these formulae is straightforward using the
set-of-orders view suggested by Definition 4.1.

Note that BZ occurs exclusively positive in all these cases, when
formulated as satisfiability problems. We can greatly profit from this
fact as follows. Most propositional provers require the input to be in

sat2000.tex; 19/01/2000; 17:36; p.14

www.manaraa.com

15

conjunctive normal form. As BZ is a conjunction of smaller formulae, it
can be converted relatively easily to conjunctive normal form (CNF),
at least much more easily than its negation N = ¬BZ. The CNF of
N , which is structurally equivalent to the disjunctive normal form of
BZ, can be understood as an implicit enumeration of all valid orders.
It seems hardly surprising that the enumeration-of-orders view is less
efficient than the constraint view using BZ.

We now concentrate on the remaining open question concerning the
consistency of the supplementing process.

4.2. Ordering Dependencies in the Supplementing Process

At first, we investigate dependencies on the ordering in which the sup-
plementing steps are performed. As the relation −→

S
is terminating,

it suffices to show that −→
S

is locally confluent to assure (global)
confluence and thus ordering independence.

LEMMA 4.8. If −→
S

is locally confluent, every order O has a unique
−→

S
-normal form.

Proof. This is just a variation of Newman’s Diamond Lemma [14]
applied to the terminating reduction relation −→

S
.

As we want to avoid the encoding of different states during the
supplementing process in a modal or non-monotonic logic, we have
to resort to constructs available in propositional logic. But a purely
propositional formalization of the local confluence property of relation
−→

S
is hard to give, as the number of supplementing steps and thus

supplementing possibilities can be quite large.
Therefore, we consider a stronger precondition by limiting the num-

ber of reduction steps:

DEFINITION 4.9. The relation −→
S

is n-step locally confluent if for
all O,O1, O2 ⊆ C there is an O12 ⊆ C with

O1 ←−S
O −→

S
O2 ⇒ O1 −→

≤n
S

O12 ←−
≤n
S

O2 .

NOTE 4.10. Obviously n-step local confluence implies local confluence.

Let us now concentrate on developing a criterion describing 1-step
local confluence. Before we can give this criterion, we need the following

DEFINITION 4.11. Let F ∈ F(C), x, y ∈ C and k ∈ {⊤,⊥}.8 The
restriction F |x=k is defined as the homomorphic extension of

y|x=k =

{

k if y = x
y otherwise

8 ⊤ denotes truth, ⊥ falsity.

sat2000.tex; 19/01/2000; 17:36; p.15

www.manaraa.com

16

to the set F(C) of formulae.

Using this definition we can formalize properties about successor
states in the supplementing process.

LEMMA 4.12. Let O c−→
S

O′ and F ∈ F . Then

O |= F |c=⊤ iff O′ |= F .
Proof. At first, note that O′ = O∪̇{c}. We proceed by structural

induction. The lemma is obvious for F = ⊤ and F = ⊥. If F = x 6= c
is a propositional variable, then x|c=⊤ = x and χO(x) = χO′(x). If
F = c, we have c|c=⊤ = ⊤ and χO′(c) = 1 = χO(⊤). Now, assume
F = ¬G. Since (¬G)|c=⊤ ≡ ¬(G|c=⊤), the induction hypothesis already
proves the lemma. The cases F = G ∨H and F = G ∧H are handled
accordingly using the fact that the restriction is a homomorphism.

Using Lemma 4.12 we can represent the effect of individual sup-
plementing steps in propositional logic. The validity of a property F
after adding code c is thus expressed by the validity of F |c=⊤ before
supplementing c.

We therefore obtain

PROPOSITION 4.13. The supplementing process (i.e., −→
S
) is 1-step

locally confluent iff

∧

c1,c2∈C
c1 6=c2

(

¬c1 ∧ ¬c2 ⇒
∧

s∈{L,R}

(

s ⇒

(

Z(c1, s) ∧ Z(c2, s) ⇒ Z(c2, s)|c1=⊤ ∧ Z(c1, s)|c2=⊤

)

)

)

(16)

is a tautology.
Proof. First we want to show that 1-step local confluence implies

(16). We assume, for a contradiction, that (16) is not a tautology. Then
there is a counterexample model O of steering type sO, and codes c1, c2

with c1 6= c2, such that c1, c2 6∈ O, O |= Z(c1, sO), O |= Z(c2, sO) and

O 6|= Z(c2, sO)|c1=⊤∧Z(c1, sO)|c2=⊤. Therefore, we also have O
c1−→

S
O1

and O
c2−→

S
O2 for appropriate O1 and O2. Moreover we get by using

Lemma 4.12: O1 6
c2−→

S
O12 or O2 6

c1−→
S
O12. As O1, O2 6= O12 we have

shown that −→
S

is not 1-step locally confluent, a contradiction. The
converse, namely that (16) implies 1-step local confluence is shown
using a similar argumentation in reverse order.

sat2000.tex; 19/01/2000; 17:36; p.16

www.manaraa.com

17

Combining Lemma 4.8 and Note 4.10 with Proposition 4.13 we
have a criterion at hand that captures the largest part of ordering
dependencies occurring in our application.9

COROLLARY 4.14. Assume (16) holds. Then the relation −→
S

gen-
erates unique normal forms.

4.3. Consistency of the Supplementing Process

The supplementing process adds codes to orders, thereby possibly con-
verting non-constructible to constructible ones. The opposite, however,
namely the conversion of constructible to non-constructible orders, may
indicate a flaw in the process, especially since the supplementing for-
mula (5) takes constructibility information (CD,CI) into consideration.
We now want to elaborate on this.

Supplementing code c ∈ C while retaining constructibility is ex-
pressed by the validity of

BC ∧ ¬c ∧
∧

s∈{L,R}

(

s⇒ Z(c, s)
)

 ⇒ BC|c=⊤ (17)

The subformula BC|c=⊤ can be further simplified in this context by
omitting certain subformulae as follows. For arbitrary formulae F we
have F ⇒ F |c=⊤ as long as c does not occur negatively in F (this is
easily proved by induction on F). As BC is a big conjunction B1∧· · ·∧Bn

we can drop those subformulae Bi not containing c negatively from the
restriction BC|c=⊤ = (B1∧· · ·∧Bn)|c=⊤, without changing the validity
of (17).

PROPOSITION 4.15. The supplementing process preserves constructibil-
ity (in the abovementioned sense) iff

∧

c∈C

(

(

BC ∧ ¬c ∧
∧

s∈{L,R}

(

s⇒ Z(c, s)
)

)

⇒ BC|c=⊤

)

(18)

is a tautology.
Proof. Following the same idea as in the proof of Lemma 4.13.

9 Multiple supplementing steps can be simulated accordingly, although at the
cost of increased complexity.

sat2000.tex; 19/01/2000; 17:36; p.17

www.manaraa.com

18

5. Experimental Results

In order to solve the decision problems developed in the last section, we
made experiments with different proving techniques, including resolu-
tion [16], term rewriting (using Stone polynomials to represent formulae
[11]), BDDs [1, 5], and variations of the Davis-Putnam (DP) algorithm
[7, 6]. Some of these techniques (e.g., BDDs) did not even permit a
representation of the generated formulae (like BZ). In general, run-times
and memory requirements differed by orders of magnitude between
these procedures. The DP algorithm turned out to be by far best-
suited to solve the generated problems. This corroborates conclusions
from [22].

Results of the experiments with a state-of-the-art implementation
of the DP algorithm (SATO [20, 21]) are shown in Table I.

We used the test set

T =
{

BZ ∧ c
∣

∣ c ∈ C
}

∪
{

BZ ∧ ¬c
∣

∣ c ∈ C
}

(representing the computation of necessary and inadmissible codes) as
input for the propositional prover and split T into two disjoint subsets
SAT and UNSAT containing satisfiable and unsatisfiable instances,
respectively.

Table I. SATO average and maximal run-times for con-
sistency proofs, in seconds.

data set #vars #clauses t̄SAT t̄UNSAT tmax

C-Class 1151 22036 0.49 0.38 0.68

Actros 1734 14264 0.19 0.13 0.21

Atego 1684 8973 0.12 0.09 0.15

The input data comprise the complete product documentation of
the limousines of the Mercedes-Benz C-class, and parts of the product
documentation of the Mercedes-Benz heavy and light trucks Actros and
Atego, respectively (each restricted to one model line). To give an idea
of the problem sizes, we have also included the number of propositional
variables and the number of clauses in Table I.

Average run times for the elements of the two test sets SAT and
UNSAT as well as the maximal run times are reported in seconds. All
tests were performed on a SUN Ultra 1 running at 140 MHz under
Solaris 2.5.1. Experiments using encodings of other consistency criteria
resulted in similar prover run-times.

sat2000.tex; 19/01/2000; 17:36; p.18

www.manaraa.com

19

Most Davis-Putnam-style implementations require the input data
to be in conjunctive normal form. We experimented with different
transformation procedures including BDD-based techniques (as they
are used, e.g., for two-level hardware minimization) and the tradi-
tional satisfiability-conserving transformation method due to Tseitin
[18]. Neither method showed clear advantages, be it in conversion times
or in the impact on prover behaviour. We nevertheless believe that the
relationship between CNF transformation technique and proof com-
plexity could be an interesting field of research.

The statistical information about the data sets shown in Table I
refers to a BDD-based CNF transformation (which results in fewer
variables, but more and longer clauses).

Further experiments with the DP algorithm using different data
structures (lists vs. tries), different variable selection heuristics, and
different types of search-space pruning, indicated that most improve-
ments on the DP algorithm (e.g., backjumping [2] or sophisticated
literal selection heuristics [9]) were vital to achieve reasonable run-times
for the complete set of generated SAT-instances.

6. Conclusions

In this paper we developed the formalization of an existing industrial
process in automotive product data management. The formalization
allows us to automatically check consistency criteria that could not
be handled so far. We were thus able to increase the quality of the
product documentation. Moreover, by establishing interactive tools for
product data management, we could provide a push-button technology
that helps the professionals cope with the continuous change of data.

Of course, practical acceptance of such tools crucially depends on
reasonable run times, even more when used interactively. The state of
development of current satisfiability checkers proved to be sufficiently
advanced for our project.

But the integration into the users’ workflow plays an equally im-
portant role. Users interact with our information system through a
graphical interface in terms of their every-day work. The product doc-
umentation is imported through a standard interface to the data base.
So, only little additional knowledge is demanded from the operating
personnel.

As the product documentation’s constraints and rules were already
presented in Boolean logic, we could restrict our work to formalizing
the process-inherent logic. A further encoding of the data was not
necessary in order to apply propositional provers. While it would be

sat2000.tex; 19/01/2000; 17:36; p.19

www.manaraa.com

20

comparatively easy to switch from one encoding to another, the critical
issue is, however, how precise the industrial data and process are laid
down initially.

Although the experiments were tailored to automotive product doc-
umentation, the underlying concepts should be applicable to neighbor-
ing fields of product data management (aviation, avionics, electronics,
etc.), and especially to automotive supply industries.

Acknowledgments

The authors would like to thank Alfons Geser for fruitful discussions
and suggestions during the early phase of the project. Special thanks
are due to Dirk Bendrich from debis Systemhaus Industry GmbH (now
with DaimlerChrysler AG), who was instrumental in initiating the
project. Throughout the project, Alexander Krewitz (debis Systemhaus
Industry GmbH) has been an extremely supportive industrial project
leader. We are grateful to Ralph Wüsthofen (DaimlerChrysler AG) for
patiently checking our processes and terminology from an industrial
point of view.

References

1. S. B. Akers. Binary decision diagrams. In IEEE Transactions on Computers,
volume C-27(6), pages 509–516, June 1978.

2. R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI’97), pages 203–208. AAAI Press, 1997.

3. A. Borälv. The industrial success of verification tools based on St̊almarck’s
method. In O. Grumberg, editor, Computer Aided Verification, volume 1254
of Lecture Notes in Computer Science, pages 7–10. Springer-Verlag, 1997.

4. J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods:
Dispelling industrial prejudices. In M. Naftalin, T. Denvir, and M. Bertran,
editors, FME’94: Industrial Benefit of Formal Methods, volume 873 of Lecture
Notes in Computer Science, pages 105–117. Springer-Verlag, 1994.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. In
IEEE Transactions on Computers, volume C-35(8), pages 677–691, Aug. 1986.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. In Communications of the ACM, volume 5, pages 394–397, July 1962.

7. M. Davis and H. Putnam. A computing procedure for quantification theory.
In Journal of the ACM, volume 7, pages 201–215, 1960.

8. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Formal Models and
Semantics, volume 2 of Handbook of Theoretical Computer Science, chapter 6.
Elsevier, 1990.

sat2000.tex; 19/01/2000; 17:36; p.20

www.manaraa.com

21

9. J. W. Freeman. Improvements to Propositional Satisfiability Search Algorithms.
PhD thesis, University of Pennsylvania, Philadelphia, Pennsylvania, May 1995.

10. A. Geser and W. Küchlin. Structured formal verification of a fragment of the
IBM 390 Clock Chip. Technical Report 97-50, RISC-Linz Report Series, Schloß
Hagenberg bei Linz, Austria, Oct. 1997.

11. J. Hsiang. Topics in Automated Theorem Proving and Program Generation.
PhD thesis, University of Illinois, Urbana, Illinois, Dec. 1982.

12. F. E. Marschner. Practical challenges for industrial formal verification tools.
In O. Grumberg, editor, Computer Aided Verification, volume 1254 of Lecture
Notes in Computer Science, pages 1–2. Springer-Verlag, 1997.

13. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, 1993.

14. M. H. A. Newman. On theories with a combinatorial definition of “equiv-
alence”. In Annals of Mathematics, volume 43, pages 223–243. Princeton
University Press, 1942.

15. R. Pugliese and E. Tronci. Automatic verification of a hydroelectric power
plant. In M.-C. Gaudel and J. Woodcock, editors, FME’96: Industrial Benefit
and Advances in Formal Methods, volume 1051 of Lecture Notes in Computer
Science, pages 425–444. Springer-Verlag, 1996.

16. J. A. Robinson. A machine-oriented logic based on the resolution principle. In
Journal of the ACM, volume 12, pages 23–41, 1965.

17. H. Saiedian. An invitation to formal methods. In E. A. Parrish, editor,
Computer, volume 29, pages 16–30. IEEE Computer Society, Apr. 1996.

18. G. S. Tseitin. On the complexity of derivation in propositional calculus. In
A. O. Silenko, editor, Studies in Constructive Mathematics and Mathematical
Logic, pages 115–125, 1970.

19. A. L. Turk, S. T. Probst, and G. J. Powers. Verification of a chemical process
leak test procedure. In O. Grumberg, editor, Computer Aided Verification,
volume 1254 of Lecture Notes in Computer Science, pages 84–94. Springer-
Verlag, 1997.

20. H. Zhang. SATO: A decision procedure for propositional logic. In Association
for Automated Reasoning Newsletter, volume 22, pages 1–3, Mar. 1993.

21. H. Zhang. SATO: An efficient propositional prover. In CADE’97: 14th Inter-
national Conference on Automated Deduction, volume 1249 of Lecture Notes
in Computer Science. Springer Verlag, 1997.

22. H. Zhang and M. Stickel. Implementing the Davis-Putnam algorithm by tries.
Technical report, Department of Computer Science, The University of Iowa,
Iowa City, IA, Aug. 1994.

sat2000.tex; 19/01/2000; 17:36; p.21

www.manaraa.com
sat2000.tex; 19/01/2000; 17:36; p.22

